

Marianins A and B, Prenylated Phenylpropanoids from Mariannaea camptospora

Takao Fukuda,[†] Yuri Sudoh,[‡] Yuki Tsuchiya,[‡] Toru Okuda,^{‡,§} Fumihiro Fujimori,[⊥] and Yasuhiro Igarashi^{*,†}

⁺Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan

^{*}Mycology & Metabolic Diversity Research Center, Tamagawa University Research Institute, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan

^{\$}HyphaGenesis Inc., 75-1 Ono, Tsurumi, Yokohama, Kanagawa 230-0046, Japan

¹Department of Environmental Science and Education, Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo, 173-8602, Japan

Supporting Information

ABSTRACT: Marianins A (1) and B (2), two new prenylated phenylpropanoids, were isolated from the culture extract of the fungus *Mariannaea camptospora*. Structures of marianins were elucidated by interpretation of NMR and other spectroscopic data. 1 is a 5-methylcoumarin bearing two prenyloxy groups, while 2 is an orcinol derivative substituted with a 3,3-dimethyl-4-pentenoyl chain. 2 is possibly derived from 1 through a Claisen rearrangement of the prenyl group, followed by lactore

Claisen rearrangement of the prenyl group, followed by lactone hydrolysis and decarboxylation. These compounds showed weak antibacterial activity against *Micrococcus luteus*.

any of fungal species in the order Hypocreales show Lpathogenicity to higher organisms such as insects and plants. These pathogenic fungi are currently attracting substantial attention as a source of bioactive small molecules owing to their potential in secondary metabolite production.¹ As an example, members of the genus Cordyceps are hostspecific entomopathogens, from which numerous structurally unique metabolites have been isolated.^{1b} Mariannaea is also described as a pathogen to some insects² and reptiles,³ and it has been recovered from soil or rotten wood, indicating its saprophytic property as well.⁴ Members of this genus show high morphological similarity to the insect-pathogen Paecilomyces, and its teleomorph is phylogenetically close to the plant-pathogen Nectria.⁵ Six species and one variety are included in the genus Mariannaea,⁶ but only one metabolite, mariannaeapyrone, has been reported from this group to date.⁷ In our investigation on chemically unexplored pathogenic fungi, HPLC/UV-based metabolite analysis of a Mariannaea strain led to the isolation of two prenylated phenylpropanoids, marianins A (1) and B (2). We herein describe the isolation and structure elucidation of these new compounds.

The producing strain *Mariannaea camptospora* TAMA 118 was isolated from a rotten wood sample collected in Tokyo, Japan. It was cultured in SGCH-X medium, and the whole culture broth was extracted with 1-butanol. The crude extract obtained after solvent removal (2.2 g from 1 L) was subjected to consecutive fractionation using silica gel and C-18 column chromatographies, followed by reversed-phase HPLC, to yield 4.0 and 1.8 mg, respectively, of marianins A (1) and B (2).

Marianin A (1) was obtained as a colorless, amorphous solid that gave an $[M - H]^-$ peak at m/z 327.1602 (calcd for C₂₀H₂₃O₄, 327.1602) in the negative ion HR-ESITOFMS, consistent with the molecular formula $C_{20}H_{24}O_4$ (nine degrees of unsaturation). The IR spectrum indicated the presence of a carbonyl functional group (1708 cm^{-1}). NMR data of 1 showed the presence of 20 carbons including four oxygenated sp² carbons, five olefinic or aromatic carbons, four quaternary sp² carbons, two oxygenated methylenes, and five methyl groups (Table 1). The ¹H-¹H COSY spectrum showed two crosspeaks, each connecting methylene protons and a vinyl proton to give two small fragments, H₂-11/H-12 and H₂-17/H-18. The first fragment was expanded to include a three-carbon fragment C-14/C-13/C-15 on the basis of HMBC correlations from the methyl proton singlets H₃-14 and H₃-15 to one another, to C-13, and to C-12, establishing a prenyl group. Similarly, the second COSY-defined fragment (H₂-17/H-18) and a three-carbon fragment C-20/C-19/C-21 were joined by a series of HMBC correlations from H₃-20 and H₃-21 to one another and to C-18 and C-19, to provide another prenyl unit. The aromatic part was constructed starting from the methyl protons H₃-16, which showed long-range couplings to C-10, C-5, and C-6. The meta relationship of C-6 and C-8 was indicated by a small coupling constant (I = 2.3 Hz) between the protons bonding to these carbons. Chemical shifts of C-6, C-8, and C-10 were relatively upfield, suggesting that these carbons were located ortho to the oxygenated sp² carbons C-7 and C-9. These data, along with

Received:January 12, 2011Published:April 13, 2011

Table 1. ¹H and ¹³C NMR Data for Marianin A (1) in CDCl₃

position	$\delta_{ m C}$, mult. a	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^b$	HMBC ^{b,c}
2	163.4, qC		
3	88.0, CH	5.51, s	2, 4, 5, 10
4	168.9, qC		
5	138.5, qC		
6	116.2, CH	6.61, d (2.3)	7, 8, 10, 16
7	161.1, qC		
8	99.4, CH	6.66, d (2.3)	4, 6, 7, 9, 10
9	156.7, qC		
10	108.0, qC		
11	66.1, CH ₂	4.61, d (6.7)	4, 12, 13
12	117.5, CH	5.50, m	
13	140.0, qC		
14	25.75 ^{<i>d</i>} , CH ₃	1.82, s	12, 13, 15
15	18.29 ^e , CH ₃	1.76, s	12, 13, 14
16	23.6, CH ₃	2.60, s	5, 6, 10
17	65.1, CH ₂	4.57, d (6.8)	7, 18, 19
18	118.8, CH	5.46, m	
19	139.1, qC		
20	25.83 ^{<i>d</i>} , CH ₃	1.80, s	18, 19, 21
21	18.34 ^e , CH ₃	1.76, s	18, 19, 20
^a Recorded a	t 100 MHz. ^b Record	ed at 500 MHz. ^c HN	ABC correlations

are from proton to the indicated carbon. ^{*d,e*} Interchangeable.

Figure 1. COSY and key HMBC correlations for 1.

HMBC correlations from H-6 and H-8 to one another, to C-7, and to C-10, and from H-8 to C-9, established the benzenoid substructure. To this unit was connected a three-carbon fragment C-2/C-3/C-4 on the basis of HMBC correlations from H-3 to

NOTE

Table 2. ¹H and ¹³C NMR Data for Marianin B (2) in $CDCl_3$

position	δ_{C} , mult. ^{<i>a</i>}	$\delta_{ m H} (J \ { m in} \ { m Hz})^b$	$\mathrm{HMBC}^{b,c}$
1	165.2, qC		
2	117.1, qC		
3	140.4, qC		
4	112.3, CH	6.27, d (2.5)	2, 5, 6, 14
5	163.1, qC		
6	99.7, CH	6.30, d (2.5)	1, 2, 4, 5
7	206.2, qC		
8	54.5, CH ₂	2.93, s	2, 7, 9, 10, 12, 13
9	37.7, qC		
10	147.3, CH	5.94, dd (17.5, 10.7)	9, 12, 13
11	110.5, CH ₂	4.91, dd (10.7, 0.8)	9, 10
		4.95, dd (17.5, 0.8)	
12	27.4, CH ₃	1.15, s	8, 9, 10, 11, 13
13	27.4, CH ₃	1.15, s	8, 9, 10, 11, 12
14	25.3, CH ₃	2.53, s	2, 3, 4, 6, 8
15	64.9, CH ₂	4.50, d (6.5)	5, 16, 17
16	118.8, CH	5.46, m	
17	139.0, qC		
18	25.8, CH ₃	1.80, s	19, 16, 17
19	18.2, CH ₃	1.74, s	18, 16, 17
1-OH		12.6, s	1, 2, 5, 6
Recorded	at 100 MHz. ^b R	lecorded at 500 MHz. ^{<i>c</i>}	HMBC correlations

are from proton to the indicated carbon.

C-2, C-4, and C-10 and a four-bond correlation from H-8 to C-4. HMBC correlations from H₂-11 to C-4 and from H₂-17 to C-7 linked the prenyl groups to these carbons through ether linkages. The remaining three degrees of unsaturation were assigned to the C-2 carbonyl functionality, the C-3–C-4 double bond, and a lactone ring connected between C-2 and C-9, to complete the structure of 1 (Figure 1).

Marianin B (2) was obtained as a colorless, amorphous solid that analyzed for the molecular formula C₁₉H₂₆O₃ on the basis of an $[M - H]^-$ peak at m/z 301.1803 observed in the HR-ESITOFMS. The IR spectrum showed absorption bands for hydroxyl (3261 cm⁻¹) and carbonyl (1609 cm⁻¹) functionalities. ¹H and ¹³C NMR analysis of **2** revealed the presence of 19 carbons including one carbonyl, two oxygenated sp² carbons, one sp² methylene, four olefinic or aromatic carbons, three quaternary sp^2 carbons, two sp^3 methylenes (one is oxygenated), one quaternary sp³ carbon, and five methyl groups (Table 2). **2** also possessed a prenyl group, as confirmed by a COSY correlation between H2-15 and H-16 and HMBC correlations from H3-18 and H₃-19 to one another, to C-16, and to C-17. Typical coupling patterns for a vinyl group were recognized in the ¹H NMR spectrum of **2**. Specifically, deshielded protons at δ 4.91 and 4.95 bonding to a single carbon at δ 110.5 were mutually coupled with a small geminal coupling constant (J = 0.8 Hz), and these protons (H₂-11) had COSY correlations to a vinyl proton, H-10. This proton showed correlations to C-9, C-12, and C-13, and two equivalent singlet methyl protons, H₃-12 and H₃-13, in turn, showed a series of HMBC correlations to C-9, C-10, and methylene carbon C-8. Furthermore, H2-8 was correlated to carbonyl carbon C-7 and quaternary sp² carbon C-2. These correlation data established a 3,3-dimethyl-4-pentenoyl chain connecting to the aromatic core. The 1,2,3,5-tetrasubstituted benzene was elucidated by HMBC correlations from an

Figure 2. COSY and key HMBC correlations for 2.

exchangeable proton at δ 12.6 to C-1, C-2, and C-6, from methyl protons H₃-14 to C-2, C-3, and C-4, and from aromatic protons H-4 and H-6 to C-5. Strong hydrogen bonding of the phenolic proton to the C-7 carbonyl was suggested by the IR absorption band at 1609 cm⁻¹, which was significantly low as a wavenumber for keto carbonyls.⁸ The prenyloxy group was attached to C-5 by an HMBC correlation from H₂-15 to C-5, to complete the structure of **2** (Figure 2).

Coumarins are the phenylalanine-derived secondary metabolites widely distributed in plants and are also produced by some fungi and bacteria.9 These aromatic lactones are often modified by prenylation,¹⁰ but those bearing more than two prenyloxy groups are very rare. Except for 1, only two plant-derived coumarins are known to be O-prenylated at two sites.¹¹ 2 features an unprecedented 3,3-dimethyl-4-pentenoyl chain attaching to the prenylated orcinol. This unique metabolite could be derived from 1 as illustrated in Figure 3. Migration of the 4-O-prenyl group to C-3 can occur by Claisen rearrangement (Figure 3, path A). Involvement of this type of rearrangement has been shown in the biogenesis of plant phenylpropanoids,^{12,13} while the direct introduction of the dimethylallyl group at C-3 is also possible by reverse-prenylation (Figure 3, path B).¹⁴ The C-2 carbonyl carbon is likely removed by lactone hydrolysis, followed by decarboxylation, as an analogous sequence of reactions has been demonstrated to proceed during alkaline hydrolysis of a plant coumarin.15

Marianins A (1) and B (2) showed weak antimicrobial activity against *Micrococcus luteus* with an MIC value of 15 and 30 μ g/mL, respectively, while both compounds had no activity against *Eschericha coli* or *Candida albicans* at 30 μ g/mL. Marianins lacked significant activity in a cancer cell cytotoxicity assay. Marianin A (1) was slightly active against HeLa and MCF7 cells with IC₅₀ values of 34 and 39 μ M, respectively, and marianin B (2) was inactive against these cell lines (IC₅₀ >100 μ M).

EXPERIMENTAL SECTION

General Experimental Procedures. UV spectra were recorded on a Hitachi U-3210 spectrophotometer. IR spectra were measured on a Perkin-Elmer Spectrum 100. NMR spectra were recorded on a Bruker AVANCE 400 or a Bruker AVANCE 500 spectrometer and referenced to the signals of tetramethylsilane as an internal standard. HR-ESI-TOFMS were recorded on a Bruker microTOF focus spectrometer. Silica gel 60 (Kanto Chemical Co., Inc., 63-210 mesh) and silica gel 60-C18 (Nacalai Tesque, 250–350 mesh) were used for silica gel and ODS column chromatographies, respectively. HPLC separation was performed using a Capcell Pak C18 MGII S5 (Shiseido Co., Ltd., 20 × 150 mm) with a photodiode array detector.

Microorganism. Strain TAMA 118 was isolated from a rotten wood sample collected at Tamagawa University, Machida, Tokyo, by direct isolation under microscope. The strain was identified as *Mariannaea camptospora* Samson on the basis of morphological and cultural

characteristics and 99% similarity of internal transcribed spacer (ITS) sequence (562 nucleotides; GenBank accession number AB587666) to *M. camptospora* NBRC 33106 (accession number AB112029) and 94% similarity to *M. camptospora* CBS 209.73 (accession number AY624202).

Fermentation. Strain TAMA 118 grown on a PDA slant was inoculated into 150 mL polypropylene flasks each containing 20 mL of the SGCH-X medium [10 g of sodium glutamate, 30 g of sucrose, 0.5 g of yeast extract (Difco Laboratories), 0.4 g of KCl, 2 g of CaCO₃, 0.015 mg of KH₂PO₄, 0.005 mg of MgSO₄·7H₂O, 2.5 mL of metal solution, and 1 L of ion exchanged water (pH was adjusted to 6.5 before addition of CaCO₃)], supplemented with 0.02 g of XAD1180 resin (Organo Co., Ltd.). Metal solution was prepared as containing 15 mg of FeSO₄·7 H₂O, 9 mg of ZnSO₄·7H₂O, 4 mg of MnSO₄·5H₂O, 5.5 mg of CuSO₄·5H₂O, 6 mg of Co(NO₃)₂·6H₂O, 2.5 mg of H₃BO₃, and 2 mg of Na₂MoO₄·2H₂O in 100 mL of 1 M H₂SO₄. After sterilization, the inoculated flasks were placed on a rotary shaker (225 rpm) at 25 °C for 21 days.

Extraction and Isolation. At the end of the fermentation period, 20 mL of 1-butanol was added to each flask, and they were allowed to shake on a rotary shaker (225 rpm) for 30 min. The mixture was centrifuged at 3000 rpm for 5 min, and the organic layer was separated from the aqueous layer containing the mycelium. Evaporation of the organic solvent gave approximately 2.2 g of extract from 1 L of culture. The crude extract was subjected to silica gel column chromatography with a step gradient of CHCl₃/MeOH (1:0, 20:1, 10:1, 4:1, 2:1, 1:1, and 0:1 v/v). Fraction 4 was further purified by C-18 reversed-phase HPLC with MeCN/0.1% HCO₂H (80:20) to give 4.0 mg of 1. Fractions 2 and 3 were combined and concentrated to provide semipure 2 (15 mg), which was further purified by C-18 reversed-phase HPLC with MeCN/ 0.1% HCO₂H (75:25) to give 1.8 mg of 2.

Marianin A (1): colorless, amorphous solid; UV (MeOH) λ_{max} (log ε) 208 (4.52), 222 (4.30), 288 (3.91), 308 (4.07), 319 (3.99) nm; IR (ATR) ν_{max} 2913, 2855, 1708, 1594, 1155 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; HR-ESITOFMS [M – H]⁻ 327.1602 (calcd for C₂₀H₂₃O₄, 327.1602).

Marianin B (**2**): colorless, amorphous solid; UV (MeOH) λ_{max} (log ε) 220 (3.85), 275 (3.48) nm; IR (ATR) ν_{max} 3261, 2924, 2855, 1609, 1159 cm⁻¹; ¹H and ¹³C NMR data, see Table 2; HR-ESITOFMS [M – H]⁻ 301.1803 (calcd for C₁₉H₂₅O₃, 301.1809).

Biological Assays. Antimicrobial assay was carried out using *Eschcerichia coli* NIH-JC2, *Micrococcus luteus* ATCC9343, and *Candida albicans* IFO1594 according to the procedures previously described.¹⁶ An MIC value of the standard antibiotic tetracycline hydrochloride

(Sigma-Aldrich Co.) against *M. luteus* was 0.1 μ g/mL. Cytotoxic assay was carried out using HeLa human cervical cancer cells and MCF7 human breast cancer cells. Cancer cells were suspended in RPMI medium containing 10% FBS (Sigma-Aldrich, Inc.) and 2 mM ι -glutamine and seeded into the wells of a 96-well culture plate (1 × 10⁴ cells/50 μ L/well). Then, test compounds at various concentrations in DMSO/RPMI medium (0.8:92.2 v/v, 50 μ L) were added to the wells. After incubation for 48 h in a humidified 5% CO₂ incubator at 37 °C, MTT (0.25 mg, Sigma-Aldrich, Inc.) in PBS (-) (50 μ L) was added to each well, and the plates were placed in the incubator at 37 °C for 4 h. Medium in the wells was removed by suction, and DMSO (100 μ L) was added to each well. After 10 min, the absorbance at 570 nm was read by a microplate reader. IC₅₀ values of the positive control staurosporin (Wako Pure Chemical Industries, Ltd.) against HeLa and MCF7 cells were 4 pM and 50 nM, respectively.

ASSOCIATED CONTENT

Supporting Information. 1D and 2D NMR spectra of 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: +81-766-56-7500. Fax: +81-766-56-2498. E-mail: yas@ pu-toyama.ac.jp.

REFERENCES

(a) Tan, R. X.; Zou, W. X. Nat. Prod. Rep. 2001, 18, 448–459.
 (b) Isaka, M.; Kittakoop, P.; Kirtikara, K.; Hywel-Jones, N. L.; Thebtaranonth, Y. Acc. Chem. Res. 2005, 38, 813–823. (c) Gunatilaka, A. A. L. J. Nat. Prod. 2006, 69, 509–526.

(2) Liu, H.; Skinner, M.; Parker, B. L.; Brownbridge, M. J. Econ. Entomol. 2002, 95, 675–681.

(3) Banning, J. L.; Weddle, A. L.; Wahl, G. W., III; Simon, M. A.; Lauer, A.; Walters, R. L.; Harris, R. N. *Oecologia* **2008**, *156*, 423–429.

(4) (a) Samson, R. A. Stud. Mycol. **1974**, *6*, 1–119. (b) Okuda, T.; Yamamoto, K. Mycoscience **2000**, *41*, 411–414.

(5) Samuels, G. J.; Samson, R. A. Sydowia 1991, 43, 249–263.

(6) http://www.indexfungorum.org/names/names.asp.

(7) Fabian, K.; Anke, T.; Sterner, O. Z. Naturforsch., C. Biosci. 2001, 56, 106–110.

(8) (a) Pretsch, E.; Buhlmann, P.; Affolter, C. Structure Determination of Organic Compounds; Springer: New York, 2000. (b) Tabuchi, H.; Tajimi, A.; Ichihara, A. Biosci. Biotechnol. Biochem. **1994**, 58, 1956–1959.

(9) (a) Dictionary of Natural Products on DVD; Chemical Database,
 Version 18.1; Chapman & Hall, 2009. (b) Heide, L. Nat. Prod. Rep. 2009,

26, 1241–1250. (10) Yazaki, K.; Sasaki, K.; Tsurumaru, Y. Phytochemistry 2009,

(10) Hazarda, H., Sabada, H., Tsataniarda, H. Phytonesiana, 2005, 70, 1739–1745.

(11) Rashid, M. A.; Armstrong, J. A.; Gray, A. I.; Waterman, P. G. *Phytochemistry* **1992**, *31*, 1265–1269.

(12) Chamberlain, T. R.; Collins, J. F.; Grundon, M. F. Chem. Commun. 1969, 1269–1270.

(13) Donnelly, W. J.; Grundon, M. F.; Ramachandran, V. N. *Proc. R.* Soc. B **1977**, 77B, 443–447.

(14) Stocking, E. M.; Williams, R. M.; Sanz-Cervera, J. F. J. Am. Chem. Soc. 2000, 122, 9089–9098.

(15) Irie, H.; Kinoshita, K.; Mizutani, H.; Takahashi, K.; Ueo, S.; Yamamoto, K. *Yakugaku Zasshi* **1968**, *88*, 627–634.

(16) Igarashi, Y.; Yu, L.; Miyanaga, S.; Fukuda, T.; Saitoh, N.; Sakurai, H.; Saiki, I.; Alonso-Vega, P.; Trujillo, M. E. *J. Nat. Prod.* **2010**, 73, 1943–1946.